Robustness of whole spine 3D reconstruction using 2D biplanar X-ray images


Robustness of Whole Spine Reconstruction using Anterior-Posterior and Lateral Planar X-ray Images, by Kim, K., Jargalsuren, S., Khuyagbaatar, B. et al. Int. J. Precis. Eng. Manuf. (2018) 19: 281.


The X-ray-based reconstruction methods using anterior-posterior (AP) and lateral (LAT) images assumes that the angle between the AP and LAT images is perpendicular. However, it is difficult to maintain the perfect perpendicular angle between the AP and LAT images when taking those two images sequentially in real situations. In this study, the robustness of a three-dimensional (3D) whole spine reconstruction method using AP and LAT planar X-ray images was analyzed by investigating cases in which the AP and LAT images were not taken perpendicularly. 3D models of the patient-specific spine from five subjects were reconstructed using AP and LAT X-Ray images and the 3D template models of C1 to L5 vertebrae based on B-spline free-form deformation (FFD) technology. The shape error, projected area error, and relative error in length were quantified by comparing the reconstructed model (FFD model) to the reference model (CT model). The results indicated that the reconstruction method might be considered robust in case that there is a small angular error, such as 5°, between the AP and LAT images. This study suggested that simple technical indications to obtain the perpendicular AP and LAT images in real situations can improve accuracy of 3D spine reconstruction.

Reconstruction process of a patient-specific 3D model

Robotic drill guide positioning in spine surgery using known-component 3D–2D image registration

Robotic drill guide positioning using known-component 3D–2D image registration, by Yi, Ramchandran, Siewerdsen, and Uneri, J. of Medical Imaging (2018), 5(2):021212.


A method for x-ray image-guided robotic instrument positioning is reported and evaluated in preclinical studies of spinal pedicle screw placement with the aim of improving delivery of transpedicle K-wires and screws. The known-component (KC) registration algorithm was used to register the three-dimensional patient CT and drill guide surface model to intraoperative two-dimensional radiographs. Resulting transformations, combined with offline hand–eye calibration, drive the robotically held drill guide to target trajectories defined in the preoperative CT. The method was assessed in comparison with a more conventional tracker-based approach, and robustness to clinically realistic errors was tested in phantom and cadaver. Deviations from planned trajectories were analyzed in terms of target registration error (TRE) at the tooltip (mm) and approach angle (deg). In phantom studies, the KC approach resulted in TRE = 1.51 ± 0.51 mm and 1.01 deg ± 0.92 deg, comparable with accuracy in tracker-based approach. In cadaver studies with realistic anatomical deformation, the KC approach yielded TRE = 2.31 ± 1.05 mm and 0.66 deg ± 0.62 deg, with statistically significant improvement versus tracker (TRE = 6.09 ± 1.22 mm and 1.06 deg ± 0.90 deg). Robustness to deformation is attributed to relatively local rigidity of anatomy in radiographic views. X-ray guidance offered accurate robotic positioning and could fit naturally within clinical workflow of fluoroscopically guided procedures.