Spine pedicle screw placement using Stryker-Ziehm Virtual Screw Technology and Navigated Stryker Cordless Driver 3


Open access preprint Thoracic, Lumbar, and Sacral Pedicle Screw Placement Using Stryker-Ziehm Virtual Screw Technology and Navigated Stryker Cordless Driver 3: Technical Note, by Satarasinghe et al. Preprints 2018.


Object. Utilization of pedicle screws (PS) for spine stabilization is common in spinal surgery. With reliance on visual inspection of anatomical landmarks prior to screw placement, the free-hand technique requires a high level of surgeon skill and precision. Three-dimensional (3D) computer-assisted virtual neuronavigation improves the precision of PS placement and minimize steps. Methods. Twenty-three patients with degenerative, traumatic, or neoplastic pathologies received treatment via a novel three-step PS technique that utilizes a navigated power driver in combination with virtual screw technology. 1) Following visualization of neuroanatomy using intraoperative CT, a navigated 3-mm match stick drill bit was inserted at anatomical entry point with screen projection showing virtual screw. 2) Navigated Stryker Cordless Driver with appropriate tap was used to access vertebral body through pedicle with screen projection again showing virtual screw. 3) Navigated Stryker Cordless Driver with actual screw was used with screen projection showing the same virtual screw. One hundred and forty-four consecutive screws were inserted using this three-step, navigated driver, virtual screw technique. Results. Only 1 screw needed intraoperative revision after insertion using the three-step, navigated driver, virtual PS technique. This amounts to a 0.69% revision rate. One hundred percent of patients had intraoperative CT reconstructed images to confirm hardware placement. Conclusions. Pedicle screw placement utilizing the Stryker-Ziehm neuronavigation virtual screw technology with a three step, navigated power drill technique is safe and effective.

Customized 3D-printed drill guides for to assist pedicle and lateral mass screw insertion

Accuracy Assessment of Pedicle and Lateral Mass Screw Insertion Assisted by Customized 3D-Printed Drill Guides: A Human Cadaver Study, by Pijpker et al.Operative Neurosurgery (2018).


Accurate cervical screw insertion is of paramount importance considering the risk of damage to adjacent vital structures. Recent research in 3-dimensional (3D) technology describes the advantage of patient-specific drill guides for accurate screw positioning, but consensus about the optimal guide design and the accuracy is lacking.

To find the optimal design and to evaluate the accuracy of individualized 3D-printed drill guides for lateral mass and pedicle screw placement in the cervical and upper thoracic spine.

Five Thiel-embalmed human cadavers were used for individualized drill-guide planning of 86 screw trajectories in the cervical and upper thoracic spine. Using 3D bone models reconstructed from acquired computed tomography scans, the drill guides were produced for both pedicle and lateral mass screw trajectories. During the study, the initial minimalistic design was refined, resulting in the advanced guide design. Screw trajectories were drilled and the realized trajectories were compared to the planned trajectories using 3D deviation analysis.

The overall entry point and 3D angular accuracy were 0.76 ± 0.52 mm and 3.22 ± 2.34°, respectively. Average measurements for the minimalistic guides were 1.20 mm for entry points, 5.61° for the 3D angulation, 2.38° for the 2D axial angulation, and 4.80° for the 2D sagittal angulation. For the advanced guides, the respective measurements were 0.66 mm, 2.72°, 1.26°, and 2.12°, respectively.

The study ultimately resulted in an advanced guide design including caudally positioned hooks, crosslink support structure, and metal inlays. The novel advanced drill guide design yields excellent drilling accuracy.

Virtual surgery simulation versus traditional approaches in training of residents in cervical pedicle screw placement


Virtual surgery simulation versus traditional approaches in training of residents in cervical pedicle screw placement, by Hou et al. Arch Orthop Trauma Surg (2018).


The cervical screw placement is one of the most difficult procedures in spine surgery, which often needs a long period of repeated practices and could cause screw placement-related complications. We performed this cadaver study to investigate the effectiveness of virtual surgical training system (VSTS) on cervical pedicle screw instrumentation for residents.

Materials and methods
A total of ten novice residents were randomly assigned to two groups: the simulation training (ST) group (n = 5) and control group (n = 5). The ST group received a surgical training of cervical pedicle screw placement on VSTS and the control group was given an introductory teaching session before cadaver test. Ten fresh adult spine specimens including 6 males and 4 females were collected, and were randomly allocated to the two groups. The bilateral C3–C6 pedicle screw instrumentation was performed in the specimens of the two groups, respectively. After instrumentation, screw positions of the two groups were evaluated by image examinations.

There was significantly statistical difference in screw penetration rates between the ST (10%) and control group (62.5%, P < 0.05). The acceptable rates of screws were 100 and 50% in the ST and control groups with significant difference between each other (P < 0.05). In addition, the average screw penetration distance in the ST group (1.12 ± 0.47 mm) was significantly lower than the control group (2.08 ± 0.39 mm, P < 0.05). Conclusions This study demonstrated that the VSTS as an advanced training tool exhibited promising effects on improving performance of novice residents in cervical pedicle screw placement compared with the traditional teaching methods.

Computer-assisted individual drill guide template for minimally invasive lumbar pedicle screw placement trajectory


Feasibility and accuracy of computer-assisted individual drill guide template for minimally invasive lumbar pedicle screw placement trajectory, Wang, Hongwei et al. Injury (2018) published ahead of print.


To discuss the feasibility and accuracy of a specific computer-assisted individual drill guide template (CIDGT) for minimally invasive lumbar pedicle screw placement trajectory (MI-LPT) through a bovine cadaveric experimental study.

A 3-D reconstruction model, including lumbar vertebras (L1-L5), was generated, and the optimal MI-LPTs were determined. A drill guide template with a surface made of the antitemplate of the vertebral surface, including the spinous process and the entry point vertebral surface, was created by reverse engineering and rapid prototyping techniques. Then, MI-LPTs were determined by the drill guide templates, and the trajectories made by K-wires were observed by postoperative CT scan.

General Hospital of Shenyang Military Area Command of Chinese PLA.

In total, 150 K-wires for MI-LPTs were successfully inserted into L1-L5. The required mean time and fluoroscopy times between fixation of the template to the spinous process, entry point vertebral surface, and insertion of the K-wires for minimally invasive lumbar pedicle screw placement trajectories into each vertebra were 79.4 ± 15.0 seconds and 2.1 ± 0.8 times. There were no significant differences between the preoperative plan and postoperative assessment in the distance from the puncture to the midline and inclination angles according to the different levels (P > 0.05, respectively). The mean deviation between the preoperative plan and postoperative assessment in the distance from the puncture to the midline and inclination angles were 0.8 ± 0.5 mm and 0.9 ± 0.5°, respectively.

The potential use of the novel CIDGT, which was based on the unique morphology of the lumbar vertebra to place minimally invasive lumbar pedicle screws, is promising and could prevent too much radiation exposure intraoperatively.

The computer vertebra biomodel and drill template were both manufactured in acrylate resin, using the stereolithography rapid prototyping technique

Robotic drill guide positioning in spine surgery using known-component 3D–2D image registration

Robotic drill guide positioning using known-component 3D–2D image registration, by Yi, Ramchandran, Siewerdsen, and Uneri, J. of Medical Imaging (2018), 5(2):021212.


A method for x-ray image-guided robotic instrument positioning is reported and evaluated in preclinical studies of spinal pedicle screw placement with the aim of improving delivery of transpedicle K-wires and screws. The known-component (KC) registration algorithm was used to register the three-dimensional patient CT and drill guide surface model to intraoperative two-dimensional radiographs. Resulting transformations, combined with offline hand–eye calibration, drive the robotically held drill guide to target trajectories defined in the preoperative CT. The method was assessed in comparison with a more conventional tracker-based approach, and robustness to clinically realistic errors was tested in phantom and cadaver. Deviations from planned trajectories were analyzed in terms of target registration error (TRE) at the tooltip (mm) and approach angle (deg). In phantom studies, the KC approach resulted in TRE = 1.51 ± 0.51 mm and 1.01 deg ± 0.92 deg, comparable with accuracy in tracker-based approach. In cadaver studies with realistic anatomical deformation, the KC approach yielded TRE = 2.31 ± 1.05 mm and 0.66 deg ± 0.62 deg, with statistically significant improvement versus tracker (TRE = 6.09 ± 1.22 mm and 1.06 deg ± 0.90 deg). Robustness to deformation is attributed to relatively local rigidity of anatomy in radiographic views. X-ray guidance offered accurate robotic positioning and could fit naturally within clinical workflow of fluoroscopically guided procedures.