Customized 3D-printed drill guides for to assist pedicle and lateral mass screw insertion

Accuracy Assessment of Pedicle and Lateral Mass Screw Insertion Assisted by Customized 3D-Printed Drill Guides: A Human Cadaver Study, by Pijpker et al.Operative Neurosurgery (2018).

Abstract:

BACKGROUND
Accurate cervical screw insertion is of paramount importance considering the risk of damage to adjacent vital structures. Recent research in 3-dimensional (3D) technology describes the advantage of patient-specific drill guides for accurate screw positioning, but consensus about the optimal guide design and the accuracy is lacking.

OBJECTIVE
To find the optimal design and to evaluate the accuracy of individualized 3D-printed drill guides for lateral mass and pedicle screw placement in the cervical and upper thoracic spine.

METHODS
Five Thiel-embalmed human cadavers were used for individualized drill-guide planning of 86 screw trajectories in the cervical and upper thoracic spine. Using 3D bone models reconstructed from acquired computed tomography scans, the drill guides were produced for both pedicle and lateral mass screw trajectories. During the study, the initial minimalistic design was refined, resulting in the advanced guide design. Screw trajectories were drilled and the realized trajectories were compared to the planned trajectories using 3D deviation analysis.

RESULTS
The overall entry point and 3D angular accuracy were 0.76 ± 0.52 mm and 3.22 ± 2.34°, respectively. Average measurements for the minimalistic guides were 1.20 mm for entry points, 5.61° for the 3D angulation, 2.38° for the 2D axial angulation, and 4.80° for the 2D sagittal angulation. For the advanced guides, the respective measurements were 0.66 mm, 2.72°, 1.26°, and 2.12°, respectively.

CONCLUSION
The study ultimately resulted in an advanced guide design including caudally positioned hooks, crosslink support structure, and metal inlays. The novel advanced drill guide design yields excellent drilling accuracy.

Computer-assisted individual drill guide template for minimally invasive lumbar pedicle screw placement trajectory

CIDGT-drill-guide

Feasibility and accuracy of computer-assisted individual drill guide template for minimally invasive lumbar pedicle screw placement trajectory, Wang, Hongwei et al. Injury (2018) published ahead of print.

Abstract

Objective
To discuss the feasibility and accuracy of a specific computer-assisted individual drill guide template (CIDGT) for minimally invasive lumbar pedicle screw placement trajectory (MI-LPT) through a bovine cadaveric experimental study.

Design
A 3-D reconstruction model, including lumbar vertebras (L1-L5), was generated, and the optimal MI-LPTs were determined. A drill guide template with a surface made of the antitemplate of the vertebral surface, including the spinous process and the entry point vertebral surface, was created by reverse engineering and rapid prototyping techniques. Then, MI-LPTs were determined by the drill guide templates, and the trajectories made by K-wires were observed by postoperative CT scan.

Setting
General Hospital of Shenyang Military Area Command of Chinese PLA.

Results
In total, 150 K-wires for MI-LPTs were successfully inserted into L1-L5. The required mean time and fluoroscopy times between fixation of the template to the spinous process, entry point vertebral surface, and insertion of the K-wires for minimally invasive lumbar pedicle screw placement trajectories into each vertebra were 79.4 ± 15.0 seconds and 2.1 ± 0.8 times. There were no significant differences between the preoperative plan and postoperative assessment in the distance from the puncture to the midline and inclination angles according to the different levels (P > 0.05, respectively). The mean deviation between the preoperative plan and postoperative assessment in the distance from the puncture to the midline and inclination angles were 0.8 ± 0.5 mm and 0.9 ± 0.5°, respectively.

Conclusions
The potential use of the novel CIDGT, which was based on the unique morphology of the lumbar vertebra to place minimally invasive lumbar pedicle screws, is promising and could prevent too much radiation exposure intraoperatively.

spine-3d-printed-mis
The computer vertebra biomodel and drill template were both manufactured in acrylate resin, using the stereolithography rapid prototyping technique