Deep-learning-assisted volume visualization


Deep-learning-assisted Volume Visualization, by Cheng, Cardone, Jain, et al., IEEE TVCG (2018), published ahead of print.


Designing volume visualizations showing various structures of interest is critical to the exploratory analysis of volumetric data. The last few years have witnessed dramatic advances in the use of convolutional neural networks for identification of objects in large image collections. Whereas such machine learning methods have shown superior performance in a number of applications, their direct use in volume visualization has not yet been explored. In this paper, we present a deep-learning-assisted volume visualization to depict complex structures, which are otherwise challenging for conventional approaches. A significant challenge in designing volume visualizations based on the high-dimensional deep features lies in efficiently handling the immense amount of information that deep-learning methods provide. In this paper, we present a new technique that uses spectral methods to facilitate user interactions with high-dimensional features. We also present a new deep-learning-assisted technique for hierarchically exploring a volumetric dataset. We have validated our approach on two electron microscopy volumes and one magnetic resonance imaging dataset.

Robustness of whole spine 3D reconstruction using 2D biplanar X-ray images


Robustness of Whole Spine Reconstruction using Anterior-Posterior and Lateral Planar X-ray Images, by Kim, K., Jargalsuren, S., Khuyagbaatar, B. et al. Int. J. Precis. Eng. Manuf. (2018) 19: 281.


The X-ray-based reconstruction methods using anterior-posterior (AP) and lateral (LAT) images assumes that the angle between the AP and LAT images is perpendicular. However, it is difficult to maintain the perfect perpendicular angle between the AP and LAT images when taking those two images sequentially in real situations. In this study, the robustness of a three-dimensional (3D) whole spine reconstruction method using AP and LAT planar X-ray images was analyzed by investigating cases in which the AP and LAT images were not taken perpendicularly. 3D models of the patient-specific spine from five subjects were reconstructed using AP and LAT X-Ray images and the 3D template models of C1 to L5 vertebrae based on B-spline free-form deformation (FFD) technology. The shape error, projected area error, and relative error in length were quantified by comparing the reconstructed model (FFD model) to the reference model (CT model). The results indicated that the reconstruction method might be considered robust in case that there is a small angular error, such as 5°, between the AP and LAT images. This study suggested that simple technical indications to obtain the perpendicular AP and LAT images in real situations can improve accuracy of 3D spine reconstruction.

Reconstruction process of a patient-specific 3D model